We consider extensions of the classical Fokker-Planck equation uₜ + ℒu = ∇·(u∇V(x)) on with ℒ = -Δ and V(x) = 1/2|x|², where ℒ is a general operator describing the diffusion and V is a suitable potential.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-24, author = {Piotr Biler and Grzegorz Karch}, title = {Generalized Fokker-Planck equations and convergence to their equilibria}, journal = {Banach Center Publications}, volume = {60}, year = {2003}, pages = {307-318}, zbl = {1024.35013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-24} }
Piotr Biler; Grzegorz Karch. Generalized Fokker-Planck equations and convergence to their equilibria. Banach Center Publications, Tome 60 (2003) pp. 307-318. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-24/