We prove local solvability in Gevrey spaces for a class of semilinear partial differential equations. The linear part admits characteristics of multiplicity k ≥ 2 and data are fixed in , 1 < σ < k/(k-1). The nonlinearity, containing derivatives of lower order, is assumed of class with respect to all variables.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-23, author = {Alessandro Oliaro and Luigi Rodino}, title = {Solvability for semilinear PDE with multiple characteristics}, journal = {Banach Center Publications}, volume = {60}, year = {2003}, pages = {295-303}, zbl = {1024.35003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-23} }
Alessandro Oliaro; Luigi Rodino. Solvability for semilinear PDE with multiple characteristics. Banach Center Publications, Tome 60 (2003) pp. 295-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-23/