Solvability for semilinear PDE with multiple characteristics
Alessandro Oliaro ; Luigi Rodino
Banach Center Publications, Tome 60 (2003), p. 295-303 / Harvested from The Polish Digital Mathematics Library

We prove local solvability in Gevrey spaces for a class of semilinear partial differential equations. The linear part admits characteristics of multiplicity k ≥ 2 and data are fixed in Gσ, 1 < σ < k/(k-1). The nonlinearity, containing derivatives of lower order, is assumed of class Gσ with respect to all variables.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:286348
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-23,
     author = {Alessandro Oliaro and Luigi Rodino},
     title = {Solvability for semilinear PDE with multiple characteristics},
     journal = {Banach Center Publications},
     volume = {60},
     year = {2003},
     pages = {295-303},
     zbl = {1024.35003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-23}
}
Alessandro Oliaro; Luigi Rodino. Solvability for semilinear PDE with multiple characteristics. Banach Center Publications, Tome 60 (2003) pp. 295-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-23/