Propagation of uniform Gevrey regularity of solutions to evolution equations
Todor Gramchev ; Ya-Guang Wang
Banach Center Publications, Tome 60 (2003), p. 279-293 / Harvested from The Polish Digital Mathematics Library

We investigate the propagation of the uniform spatial Gevrey Gσ, σ ≥ 1, regularity for t → +∞ of solutions to evolution equations like generalizations of the Euler equation and the semilinear Schrödinger equation with polynomial nonlinearities. The proofs are based on direct iterative arguments and nonlinear Gevrey estimates.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:282540
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22,
     author = {Todor Gramchev and Ya-Guang Wang},
     title = {Propagation of uniform Gevrey regularity of solutions to evolution equations},
     journal = {Banach Center Publications},
     volume = {60},
     year = {2003},
     pages = {279-293},
     zbl = {1044.35015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22}
}
Todor Gramchev; Ya-Guang Wang. Propagation of uniform Gevrey regularity of solutions to evolution equations. Banach Center Publications, Tome 60 (2003) pp. 279-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22/