We investigate the propagation of the uniform spatial Gevrey , σ ≥ 1, regularity for t → +∞ of solutions to evolution equations like generalizations of the Euler equation and the semilinear Schrödinger equation with polynomial nonlinearities. The proofs are based on direct iterative arguments and nonlinear Gevrey estimates.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22, author = {Todor Gramchev and Ya-Guang Wang}, title = {Propagation of uniform Gevrey regularity of solutions to evolution equations}, journal = {Banach Center Publications}, volume = {60}, year = {2003}, pages = {279-293}, zbl = {1044.35015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22} }
Todor Gramchev; Ya-Guang Wang. Propagation of uniform Gevrey regularity of solutions to evolution equations. Banach Center Publications, Tome 60 (2003) pp. 279-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22/