We investigate the propagation of the uniform spatial Gevrey , σ ≥ 1, regularity for t → +∞ of solutions to evolution equations like generalizations of the Euler equation and the semilinear Schrödinger equation with polynomial nonlinearities. The proofs are based on direct iterative arguments and nonlinear Gevrey estimates.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22,
author = {Todor Gramchev and Ya-Guang Wang},
title = {Propagation of uniform Gevrey regularity of solutions to evolution equations},
journal = {Banach Center Publications},
volume = {60},
year = {2003},
pages = {279-293},
zbl = {1044.35015},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22}
}
Todor Gramchev; Ya-Guang Wang. Propagation of uniform Gevrey regularity of solutions to evolution equations. Banach Center Publications, Tome 60 (2003) pp. 279-293. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-22/