In this paper we prove the -well posedness of the Cauchy problem for quasi-linear hyperbolic equations of second order with coefficients non-Lipschitz in t ∈ [0,T] and smooth in x ∈ ℝⁿ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-11,
author = {Akisato Kubo and Michael Reissig},
title = {$C^{$\infty$}$-well posedness of the Cauchy problem for quasi-linear hyperbolic equations with coefficients non-Lipschitz in time and smooth in space},
journal = {Banach Center Publications},
volume = {60},
year = {2003},
pages = {131-150},
zbl = {1035.35083},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-11}
}
Akisato Kubo; Michael Reissig. $C^{∞}$-well posedness of the Cauchy problem for quasi-linear hyperbolic equations with coefficients non-Lipschitz in time and smooth in space. Banach Center Publications, Tome 60 (2003) pp. 131-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-11/