In this paper we prove the -well posedness of the Cauchy problem for quasi-linear hyperbolic equations of second order with coefficients non-Lipschitz in t ∈ [0,T] and smooth in x ∈ ℝⁿ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-11, author = {Akisato Kubo and Michael Reissig}, title = {$C^{$\infty$}$-well posedness of the Cauchy problem for quasi-linear hyperbolic equations with coefficients non-Lipschitz in time and smooth in space}, journal = {Banach Center Publications}, volume = {60}, year = {2003}, pages = {131-150}, zbl = {1035.35083}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-11} }
Akisato Kubo; Michael Reissig. $C^{∞}$-well posedness of the Cauchy problem for quasi-linear hyperbolic equations with coefficients non-Lipschitz in time and smooth in space. Banach Center Publications, Tome 60 (2003) pp. 131-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc60-0-11/