This paper deals with the notion of Gröbner δ-base for some rings of linear differential operators by adapting the works of W. Trinks, A. Assi, M. Insa and F. Pauer. We compare this notion with the one of Gröbner base for such rings. As an application we give some results on finiteness and on flatness of finitely generated left modules over these rings.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc58-0-4, author = {Francisco J. Castro-Jim\'enez and M. Angeles Moreno-Fr\'\i as}, title = {Gr\"obner $\delta$-bases and Gr\"obner bases for differential operators}, journal = {Banach Center Publications}, volume = {58}, year = {2002}, pages = {45-61}, zbl = {1058.16025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc58-0-4} }
Francisco J. Castro-Jiménez; M. Angeles Moreno-Frías. Gröbner δ-bases and Gröbner bases for differential operators. Banach Center Publications, Tome 58 (2002) pp. 45-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc58-0-4/