Centroaffine differential geometry and its relations to horizontal submanifolds
Luc Vrancken
Banach Center Publications, Tome 58 (2002), p. 21-28 / Harvested from The Polish Digital Mathematics Library

We relate centroaffine immersions f:Mn+1 to horizontal immersions g of Mⁿ into Sn+12n+1(1) or Hn2n+1(-1). We also show that f is an equiaffine sphere, i.e. the centroaffine normal is a constant multiple of the Blaschke normal, if and only if g is minimal.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282229
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc57-0-3,
     author = {Luc Vrancken},
     title = {Centroaffine differential geometry and its relations to horizontal submanifolds},
     journal = {Banach Center Publications},
     volume = {58},
     year = {2002},
     pages = {21-28},
     zbl = {1023.53010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc57-0-3}
}
Luc Vrancken. Centroaffine differential geometry and its relations to horizontal submanifolds. Banach Center Publications, Tome 58 (2002) pp. 21-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc57-0-3/