A note on the torsion of the Jacobians of superelliptic curves yq=xp+a
Tomasz Jędrzejak
Banach Center Publications, Tome 108 (2016), p. 143-149 / Harvested from The Polish Digital Mathematics Library

This article is a short version of the paper published in J. Number Theory 145 (2014) but we add new results and a brief discussion about the Torsion Conjecture. Consider the family of superelliptic curves (over ℚ) Cq,p,a:yq=xp+a, and its Jacobians Jq,p,a, where 2 < q < p are primes. We give the full (resp. partial) characterization of the torsion part of J3,5,a() (resp. Jq,p,a()). The main tools are computations of the zeta function of C3,5,a (resp. Cq,p,a) over l for primes l ≡ 1,2,4,8,11 (mod 15) (resp. for primes l ≡ -1 (mod qp)) and applications of the Chebotarev Density Theorem.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286101
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc108-0-11,
     author = {Tomasz J\k edrzejak},
     title = {A note on the torsion of the Jacobians of superelliptic curves $y^{q} = x^{p} + a$
            },
     journal = {Banach Center Publications},
     volume = {108},
     year = {2016},
     pages = {143-149},
     zbl = {06622291},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc108-0-11}
}
Tomasz Jędrzejak. A note on the torsion of the Jacobians of superelliptic curves $y^{q} = x^{p} + a$
            . Banach Center Publications, Tome 108 (2016) pp. 143-149. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc108-0-11/