This paper presents algorithms for quadratic forms over a formally real algebraic function field K of one variable over a fixed real closed field k. The algorithms introduced in the paper solve the following problems: test whether an element is a square, respectively a local square, compute Witt index of a quadratic form and test if a form is isotropic/hyperbolic. Finally, we remark on a method for testing whether two function fields are Witt equivalent.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc108-0-10, author = {Konrad Ja\l owiecki and Przemys\l aw Koprowski}, title = {Algorithms for quadratic forms over real function fields}, journal = {Banach Center Publications}, volume = {108}, year = {2016}, pages = {133-141}, zbl = {06622290}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc108-0-10} }
Konrad Jałowiecki; Przemysław Koprowski. Algorithms for quadratic forms over real function fields. Banach Center Publications, Tome 108 (2016) pp. 133-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc108-0-10/