On a noncommutative algebraic geometry
Banach Center Publications, Tome 104 (2015), p. 119-131 / Harvested from The Polish Digital Mathematics Library

Several sets of quaternionic functions are described and studied with respect to hyperholomorphy, addition and (non-commutative) multiplication, on open sets of ℍ, then Hamilton 4-manifolds analogous to Riemann surfaces, for ℍ instead of ℂ, are defined, and so begin to describe a class of four-dimensional manifolds.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:282185
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-8,
     title = {On a noncommutative algebraic geometry},
     journal = {Banach Center Publications},
     volume = {104},
     year = {2015},
     pages = {119-131},
     zbl = {06556706},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-8}
}
 (éd.). On a noncommutative algebraic geometry. Banach Center Publications, Tome 104 (2015) pp. 119-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-8/