Let f be meromorphic on the compact set E ⊂ C with maximal Green domain of meromorphy , ρ(f) < ∞. We investigate rational approximants of f on E with numerator degree ≤ n and denominator degree ≤ mₙ. We show that a geometric convergence rate of order on E implies uniform maximal convergence in m₁-measure inside if mₙ = o(n/log n) as n → ∞. If mₙ = o(n), n → ∞, then maximal convergence in capacity inside can be proved at least for a subsequence Λ ⊂ ℕ. Moreover, an analogue of Walsh’s estimate for the growth of polynomial approximants is proved for outside .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-5, author = {Hans-Peter Blatt}, title = {Maximally convergent rational approximants of meromorphic functions}, journal = {Banach Center Publications}, volume = {104}, year = {2015}, pages = {63-78}, zbl = {1336.41006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-5} }
Hans-Peter Blatt. Maximally convergent rational approximants of meromorphic functions. Banach Center Publications, Tome 104 (2015) pp. 63-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-5/