Maximally convergent rational approximants of meromorphic functions
Hans-Peter Blatt
Banach Center Publications, Tome 104 (2015), p. 63-78 / Harvested from The Polish Digital Mathematics Library

Let f be meromorphic on the compact set E ⊂ C with maximal Green domain of meromorphy Eρ(f), ρ(f) < ∞. We investigate rational approximants rn,m of f on E with numerator degree ≤ n and denominator degree ≤ mₙ. We show that a geometric convergence rate of order ρ(f)-n on E implies uniform maximal convergence in m₁-measure inside Eρ(f) if mₙ = o(n/log n) as n → ∞. If mₙ = o(n), n → ∞, then maximal convergence in capacity inside Eρ(f) can be proved at least for a subsequence Λ ⊂ ℕ. Moreover, an analogue of Walsh’s estimate for the growth of polynomial approximants is proved for rn,m outside Eρ(f).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:282220
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-5,
     author = {Hans-Peter Blatt},
     title = {Maximally convergent rational approximants of meromorphic functions},
     journal = {Banach Center Publications},
     volume = {104},
     year = {2015},
     pages = {63-78},
     zbl = {1336.41006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-5}
}
Hans-Peter Blatt. Maximally convergent rational approximants of meromorphic functions. Banach Center Publications, Tome 104 (2015) pp. 63-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-5/