Stochastic characterization of plurisubharmonicity and convexity of functions
Maciej Klimek
Banach Center Publications, Tome 104 (2015), p. 175-181 / Harvested from The Polish Digital Mathematics Library

It is described how both plurisubharmonicity and convexity of functions can be characterized in terms of simple to work with classes of holomorphic martingales, namely a class of driftless Itô processes satisfying a skew-symmetry property and a family of linear modifications of Brownian motion parametrized by a compact set.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:282328
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-12,
     author = {Maciej Klimek},
     title = {Stochastic characterization of plurisubharmonicity and convexity of functions},
     journal = {Banach Center Publications},
     volume = {104},
     year = {2015},
     pages = {175-181},
     zbl = {1336.32031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-12}
}
Maciej Klimek. Stochastic characterization of plurisubharmonicity and convexity of functions. Banach Center Publications, Tome 104 (2015) pp. 175-181. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-12/