On Pólya's Theorem in several complex variables
Ozan Günyüz ; Vyacheslav Zakharyuta
Banach Center Publications, Tome 104 (2015), p. 149-157 / Harvested from The Polish Digital Mathematics Library

Let K be a compact set in ℂ, f a function analytic in ℂ̅∖K vanishing at ∞. Let f(z)=k=0akz-k-1 be its Taylor expansion at ∞, and Hs(f)=det(ak+l)k,l=0s the sequence of Hankel determinants. The classical Pólya inequality says that limsups|Hs(f)|1/s²d(K), where d(K) is the transfinite diameter of K. Goluzin has shown that for some class of compacta this inequality is sharp. We provide here a sharpness result for the multivariate analog of Pólya’s inequality, considered by the second author in Math. USSR Sbornik 25 (1975), 350-364.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:281663
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-10,
     author = {Ozan G\"uny\"uz and Vyacheslav Zakharyuta},
     title = {On P\'olya's Theorem in several complex variables},
     journal = {Banach Center Publications},
     volume = {104},
     year = {2015},
     pages = {149-157},
     zbl = {06556708},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-10}
}
Ozan Günyüz; Vyacheslav Zakharyuta. On Pólya's Theorem in several complex variables. Banach Center Publications, Tome 104 (2015) pp. 149-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-10/