Refining previously known estimates, we give large-strike asymptotics for the implied volatility of Merton's and Kou's jump diffusion models. They are deduced from call price approximations by transfer results of Gao and Lee. For the Merton model, we also analyse the density of the underlying and show that it features an interesting "almost power law" tail.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc104-0-4, author = {Stefan Gerhold and Johannes F. Morgenbesser and Axel Zrunek}, title = {Refined wing asymptotics for the Merton and Kou jump diffusion models}, journal = {Banach Center Publications}, volume = {104}, year = {2015}, pages = {85-94}, zbl = {1312.91087}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc104-0-4} }
Stefan Gerhold; Johannes F. Morgenbesser; Axel Zrunek. Refined wing asymptotics for the Merton and Kou jump diffusion models. Banach Center Publications, Tome 104 (2015) pp. 85-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc104-0-4/