We study continuous embeddings of Besov spaces of type , where s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞, and the weight w is doubling. This approach generalises recent results about embeddings of Muckenhoupt weighted Besov spaces. Our main argument relies on appropriate atomic decomposition techniques of such weighted spaces; here we benefit from earlier results by Bownik. In addition, we discuss some other related weight classes briefly and compare corresponding results.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-7, author = {Dorothee D. Haroske and Philipp Skandera}, title = {Embeddings of doubling weighted Besov spaces}, journal = {Banach Center Publications}, volume = {102}, year = {2014}, pages = {105-119}, zbl = {1323.46027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-7} }
Dorothee D. Haroske; Philipp Skandera. Embeddings of doubling weighted Besov spaces. Banach Center Publications, Tome 102 (2014) pp. 105-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-7/