Cantor-Bernstein theorems for Orlicz sequence spaces
Carlos E. Finol ; Marcos J. González ; Marek Wójtowicz
Banach Center Publications, Tome 102 (2014), p. 71-88 / Harvested from The Polish Digital Mathematics Library

For two Banach spaces X and Y, we write dim(X)=dim(Y) if X embeds into Y and vice versa; then we say that X and Y have the same linear dimension. In this paper, we consider classes of Banach spaces with symmetric bases. We say that such a class ℱ has the Cantor-Bernstein property if for every X,Y ∈ ℱ the condition dim(X)=dim(Y) implies the respective bases (of X and Y) are equivalent, and hence the spaces X and Y are isomorphic. We prove (Theorems 3.1, 3.3, 3.5) that the class of Orlicz sequence spaces generated by regularly varying Orlicz functions is of this type. This complements some results in this direction obtained earlier by S. Banach (Proposition 1.1), L. Drewnowski (Proposition 1.2), and M. J. Gonzalez, B. Sari and M. Wójtowicz (Theorem 1.4). Our theorems apply to large families of concrete Orlicz spaces.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286637
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-4,
     author = {Carlos E. Finol and Marcos J. Gonz\'alez and Marek W\'ojtowicz},
     title = {Cantor-Bernstein theorems for Orlicz sequence spaces},
     journal = {Banach Center Publications},
     volume = {102},
     year = {2014},
     pages = {71-88},
     zbl = {1321.46010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-4}
}
Carlos E. Finol; Marcos J. González; Marek Wójtowicz. Cantor-Bernstein theorems for Orlicz sequence spaces. Banach Center Publications, Tome 102 (2014) pp. 71-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-4/