Geometric structure of Cesàro function spaces , where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that contains isomorphic and complemented copies of -spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-1, author = {Sergey V. Astashkin and Lech Maligranda}, title = {Structure of Ces\`aro function spaces: a survey}, journal = {Banach Center Publications}, volume = {102}, year = {2014}, pages = {13-40}, zbl = {1327.46028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-1} }
Sergey V. Astashkin; Lech Maligranda. Structure of Cesàro function spaces: a survey. Banach Center Publications, Tome 102 (2014) pp. 13-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc102-0-1/