We prove sharp a priori estimates for the distribution function of the dyadic maximal function ℳ ϕ, when ϕ belongs to the Lorentz space , 1 < p < ∞, 1 ≤ q < ∞. The approach rests on a precise evaluation of the Bellman function corresponding to the problem. As an application, we establish refined weak-type estimates for the dyadic maximal operator: for p,q as above and r ∈ [1,p], we determine the best constant such that for any , .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-12, author = {Adam Os\k ekowski}, title = {Weak-type inequalities for maximal operators acting on Lorentz spaces}, journal = {Banach Center Publications}, volume = {102}, year = {2014}, pages = {145-162}, zbl = {1293.42023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-12} }
Adam Osękowski. Weak-type inequalities for maximal operators acting on Lorentz spaces. Banach Center Publications, Tome 102 (2014) pp. 145-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-12/