Weak-type inequalities for maximal operators acting on Lorentz spaces
Adam Osękowski
Banach Center Publications, Tome 102 (2014), p. 145-162 / Harvested from The Polish Digital Mathematics Library

We prove sharp a priori estimates for the distribution function of the dyadic maximal function ℳ ϕ, when ϕ belongs to the Lorentz space Lp,q, 1 < p < ∞, 1 ≤ q < ∞. The approach rests on a precise evaluation of the Bellman function corresponding to the problem. As an application, we establish refined weak-type estimates for the dyadic maximal operator: for p,q as above and r ∈ [1,p], we determine the best constant Cp,q,r such that for any ϕLp,q, ||ϕ||r,Cp,q,r||ϕ||p,q.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:281906
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-12,
     author = {Adam Os\k ekowski},
     title = {Weak-type inequalities for maximal operators acting on Lorentz spaces},
     journal = {Banach Center Publications},
     volume = {102},
     year = {2014},
     pages = {145-162},
     zbl = {1293.42023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-12}
}
Adam Osękowski. Weak-type inequalities for maximal operators acting on Lorentz spaces. Banach Center Publications, Tome 102 (2014) pp. 145-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc101-0-12/