Every knot is a billiard knot
P. V. Koseleff ; D. Pecker
Banach Center Publications, Tome 102 (2014), p. 173-178 / Harvested from The Polish Digital Mathematics Library

We show that every knot can be realized as a billiard trajectory in a convex prism. This proves a conjecture of Jones and Przytycki.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:282331
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc100-0-9,
     author = {P. V. Koseleff and D. Pecker},
     title = {Every knot is a billiard knot},
     journal = {Banach Center Publications},
     volume = {102},
     year = {2014},
     pages = {173-178},
     zbl = {1287.57011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc100-0-9}
}
P. V. Koseleff; D. Pecker. Every knot is a billiard knot. Banach Center Publications, Tome 102 (2014) pp. 173-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc100-0-9/