A cohomology theory for colored tangles
Carmen Caprau
Banach Center Publications, Tome 102 (2014), p. 13-25 / Harvested from The Polish Digital Mathematics Library

We employ the sl(2) foam cohomology to define a cohomology theory for oriented framed tangles whose components are labeled by irreducible representations of Uq(sl(2)). We show that the corresponding colored invariants of tangles can be assembled into invariants of bigger tangles. For the case of knots and links, the corresponding theory is a categorification of the colored Jones polynomial, and provides a tool for efficient computations of the resulting colored invariant of knots and links. Our theory is defined over the Gaussian integers ℤ[i] (and more generally over ℤ[i][a,h], where a,h are formal parameters), and enhances the existing categorifications of the colored Jones polynomial.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:282439
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-bc100-0-1,
     author = {Carmen Caprau},
     title = {A cohomology theory for colored tangles},
     journal = {Banach Center Publications},
     volume = {102},
     year = {2014},
     pages = {13-25},
     zbl = {1302.57012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc100-0-1}
}
Carmen Caprau. A cohomology theory for colored tangles. Banach Center Publications, Tome 102 (2014) pp. 13-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-bc100-0-1/