Generalized Hilbert Operators on Bergman and Dirichlet Spaces of Analytic Functions
Sunanda Naik ; Karabi Rajbangshi
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015), p. 227-235 / Harvested from The Polish Digital Mathematics Library

Let f be an analytic function on the unit disk . We define a generalized Hilbert-type operator a,b by a,b(f)(z)=Γ(a+1)/Γ(b+1)01(f(t)(1-t)b)/((1-tz)a+1)dt, where a and b are non-negative real numbers. In particular, for a = b = β, a,b becomes the generalized Hilbert operator β, and β = 0 gives the classical Hilbert operator . In this article, we find conditions on a and b such that a,b is bounded on Dirichlet-type spaces Sp, 0 < p < 2, and on Bergman spaces Ap, 2 < p < ∞. Also we find an upper bound for the norm of the operator a,b. These generalize some results of E. Diamantopolous (2004) and S. Li (2009).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:281137
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba8031-1-2016,
     author = {Sunanda Naik and Karabi Rajbangshi},
     title = {Generalized Hilbert Operators on Bergman and Dirichlet Spaces of Analytic Functions},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {63},
     year = {2015},
     pages = {227-235},
     zbl = {1337.30063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba8031-1-2016}
}
Sunanda Naik; Karabi Rajbangshi. Generalized Hilbert Operators on Bergman and Dirichlet Spaces of Analytic Functions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) pp. 227-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba8031-1-2016/