We prove that if a,b,c,d,e,m are integers, m > 0 and (m,ac) = 1, then there exist infinitely many positive integers n such that m|(an+b)cⁿ - deⁿ. Hence we derive a similar conclusion for ternary integral recurrences.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba63-1-3, author = {A. Schinzel}, title = {On Ternary Integral Recurrences}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {63}, year = {2015}, pages = {19-23}, zbl = {06488953}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba63-1-3} }
A. Schinzel. On Ternary Integral Recurrences. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 63 (2015) pp. 19-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba63-1-3/