Characteristic Exponents of Rational Functions
Anna Zdunik
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014), p. 257-263 / Harvested from The Polish Digital Mathematics Library

We consider two characteristic exponents of a rational function f:ℂ̂ → ℂ̂ of degree d ≥ 2. The exponent χa(f) is the average of log∥f’∥ with respect to the measure of maximal entropy. The exponent χm(f) can be defined as the maximal characteristic exponent over all periodic orbits of f. We prove that χa(f)=χm(f) if and only if f(z) is conformally conjugate to zz±d.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:281195
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-3-6,
     author = {Anna Zdunik},
     title = {Characteristic Exponents of Rational Functions},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {62},
     year = {2014},
     pages = {257-263},
     zbl = {1308.30040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-3-6}
}
Anna Zdunik. Characteristic Exponents of Rational Functions. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) pp. 257-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-3-6/