The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-3-2, author = {Susil Kumar Jena}, title = {Parametric Solutions of the Diophantine Equation A2 + nB4 = C3}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {62}, year = {2014}, pages = {211-214}, zbl = {1308.11036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-3-2} }
Susil Kumar Jena. Parametric Solutions of the Diophantine Equation A² + nB⁴ = C³. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) pp. 211-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-3-2/