We study the problem of consistent and homogeneous colourings for increasing families of dyadic intervals. We determine when this problem can be solved and when it cannot.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-2-1,
author = {Anna Kamont and Paul F. X. M\"uller},
title = {Combinatorics of Dyadic Intervals: Consistent Colourings},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
volume = {62},
year = {2014},
pages = {101-115},
zbl = {1303.05014},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-2-1}
}
Anna Kamont; Paul F. X. Müller. Combinatorics of Dyadic Intervals: Consistent Colourings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) pp. 101-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-2-1/