We study the problem of consistent and homogeneous colourings for increasing families of dyadic intervals. We determine when this problem can be solved and when it cannot.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-2-1, author = {Anna Kamont and Paul F. X. M\"uller}, title = {Combinatorics of Dyadic Intervals: Consistent Colourings}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {62}, year = {2014}, pages = {101-115}, zbl = {1303.05014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-2-1} }
Anna Kamont; Paul F. X. Müller. Combinatorics of Dyadic Intervals: Consistent Colourings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 62 (2014) pp. 101-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba62-2-1/