The Brouwer Fixed Point Theorem for Some Set Mappings
Dariusz Miklaszewski
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013), p. 133-140 / Harvested from The Polish Digital Mathematics Library

For some classes X2 of closed subsets of the disc ₙ ⊂ ℝⁿ we prove that every Hausdorff-continuous mapping f: X → X has a fixed point A ∈ X in the sense that the intersection A ∩ f(A) is nonempty.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:281289
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6,
     author = {Dariusz Miklaszewski},
     title = {The Brouwer Fixed Point Theorem for Some Set Mappings},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {61},
     year = {2013},
     pages = {133-140},
     zbl = {1283.55001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6}
}
Dariusz Miklaszewski. The Brouwer Fixed Point Theorem for Some Set Mappings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) pp. 133-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6/