For some classes of closed subsets of the disc ₙ ⊂ ℝⁿ we prove that every Hausdorff-continuous mapping f: X → X has a fixed point A ∈ X in the sense that the intersection A ∩ f(A) is nonempty.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6,
author = {Dariusz Miklaszewski},
title = {The Brouwer Fixed Point Theorem for Some Set Mappings},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
volume = {61},
year = {2013},
pages = {133-140},
zbl = {1283.55001},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6}
}
Dariusz Miklaszewski. The Brouwer Fixed Point Theorem for Some Set Mappings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) pp. 133-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6/