For some classes of closed subsets of the disc ₙ ⊂ ℝⁿ we prove that every Hausdorff-continuous mapping f: X → X has a fixed point A ∈ X in the sense that the intersection A ∩ f(A) is nonempty.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6, author = {Dariusz Miklaszewski}, title = {The Brouwer Fixed Point Theorem for Some Set Mappings}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {61}, year = {2013}, pages = {133-140}, zbl = {1283.55001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6} }
Dariusz Miklaszewski. The Brouwer Fixed Point Theorem for Some Set Mappings. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) pp. 133-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-2-6/