Let (X,A) be a pair of topological spaces, T : X → X a free involution and A a T-invariant subset of X. In this context, a question that naturally arises is whether or not all continuous maps have a T-coincidence point, that is, a point x ∈ X with f(x) = f(T(x)). In this paper, we obtain results of this nature under cohomological conditions on the spaces A and X.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-1-8, author = {Denise de Mattos and Tha\'\i s F. M. Monis and Edivaldo L. dos Santos}, title = {Relative Borsuk-Ulam Theorems for Spaces with a Free Z2-action}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {61}, year = {2013}, pages = {71-77}, zbl = {1272.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-1-8} }
Denise de Mattos; Thaís F. M. Monis; Edivaldo L. dos Santos. Relative Borsuk-Ulam Theorems for Spaces with a Free ℤ₂-action. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 61 (2013) pp. 71-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba61-1-8/