Vector-Valued Singular Integrals Revisited-with Random Dyadic Cubes
Tuomas P. Hytönen
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 60 (2012), p. 269-283 / Harvested from The Polish Digital Mathematics Library

The vector-valued T(1) theorem due to Figiel, and a certain square function estimate of Bourgain for translations of functions with a limited frequency spectrum, are two cornerstones of harmonic analysis in UMD spaces. In this paper, a simplified approach to these results is presented, exploiting Nazarov, Treil and Volberg's method of random dyadic cubes, which allows one to circumvent the most subtle parts of the original arguments.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:281286
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba60-3-7,
     author = {Tuomas P. Hyt\"onen},
     title = {Vector-Valued Singular Integrals Revisited-with Random Dyadic Cubes},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {60},
     year = {2012},
     pages = {269-283},
     zbl = {1254.42026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba60-3-7}
}
Tuomas P. Hytönen. Vector-Valued Singular Integrals Revisited-with Random Dyadic Cubes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 60 (2012) pp. 269-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba60-3-7/