In ZF, i.e., the Zermelo-Fraenkel set theory minus the Axiom of Choice AC, we investigate the relationship between the Tychonoff product , where 2 is 2 = 0,1 with the discrete topology, and the Stone space S(X) of the Boolean algebra of all subsets of X, where X = ω,ℝ. We also study the possible placement of well-known topological statements which concern the cited spaces in the hierarchy of weak choice principles.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-2-1, author = {Horst Herrlich and Kyriakos Keremedis and Eleftherios Tachtsis}, title = {Remarks on the Stone Spaces of the Integers and the Reals without AC}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {59}, year = {2011}, pages = {101-114}, zbl = {1242.03072}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-2-1} }
Horst Herrlich; Kyriakos Keremedis; Eleftherios Tachtsis. Remarks on the Stone Spaces of the Integers and the Reals without AC. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) pp. 101-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-2-1/