Remarks on the Bourgain-Brezis-Mironescu Approach to Sobolev Spaces
B. Bojarski
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011), p. 65-75 / Harvested from The Polish Digital Mathematics Library

For a function fLlocp() the notion of p-mean variation of order 1, p(f,) is defined. It generalizes the concept of F. Riesz variation of functions on the real line ℝ¹ to ℝⁿ, n > 1. The characterisation of the Sobolev space W1,p() in terms of p(f,) is directly related to the characterisation of W1,p() by Lipschitz type pointwise inequalities of Bojarski, Hajłasz and Strzelecki and to the Bourgain-Brezis-Mironescu approach.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:286291
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-8,
     author = {B. Bojarski},
     title = {Remarks on the Bourgain-Brezis-Mironescu Approach to Sobolev Spaces},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {59},
     year = {2011},
     pages = {65-75},
     zbl = {1230.46028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-8}
}
B. Bojarski. Remarks on the Bourgain-Brezis-Mironescu Approach to Sobolev Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) pp. 65-75. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-8/