By an elementary approach, we derive the value of the Gauss sum of a cubic character over a finite field without using Davenport-Hasse’s theorem (namely, if s is odd the Gauss sum is -1, and if s is even its value is ).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-2, author = {Davide Schipani and Michele Elia}, title = {Gauss Sums of the Cubic Character over $GF(2^m)$: an Elementary Derivation}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {59}, year = {2011}, pages = {11-18}, zbl = {1215.11117}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-2} }
Davide Schipani; Michele Elia. Gauss Sums of the Cubic Character over $GF(2^m)$: an Elementary Derivation. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) pp. 11-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-2/