Let k be a real quadratic field and let and be the ring of integers and the group of units, respectively. A method of solving the Diophantine equation X³ = u+v (, ) is developed.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-1, author = {Takaaki Kagawa}, title = {The Diophantine Equation X$^3$ = u+v over Real Quadratic Fields}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {59}, year = {2011}, pages = {1-9}, zbl = {1228.11039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-1} }
Takaaki Kagawa. The Diophantine Equation X³ = u+v over Real Quadratic Fields. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 59 (2011) pp. 1-9. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba59-1-1/