Let X and Y be two Polish spaces. Functions f,g: X → Y are called equivalent if there exists a bijection φ from X onto itself such that g∘φ = f. Using a theorem of J. Saint Raymond we characterize functions equivalent to Borel measurable ones. This characterization answers a question asked by M. Morayne and C. Ryll-Nardzewski.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba58-1-7, author = {Andrzej Komisarski and Henryk Michalewski and Pawe\l\ Milewski}, title = {Functions Equivalent to Borel Measurable Ones}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {58}, year = {2010}, pages = {55-64}, zbl = {1207.54045}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba58-1-7} }
Andrzej Komisarski; Henryk Michalewski; Paweł Milewski. Functions Equivalent to Borel Measurable Ones. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) pp. 55-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba58-1-7/