Functions Equivalent to Borel Measurable Ones
Andrzej Komisarski ; Henryk Michalewski ; Paweł Milewski
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010), p. 55-64 / Harvested from The Polish Digital Mathematics Library

Let X and Y be two Polish spaces. Functions f,g: X → Y are called equivalent if there exists a bijection φ from X onto itself such that g∘φ = f. Using a theorem of J. Saint Raymond we characterize functions equivalent to Borel measurable ones. This characterization answers a question asked by M. Morayne and C. Ryll-Nardzewski.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:286264
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba58-1-7,
     author = {Andrzej Komisarski and Henryk Michalewski and Pawe\l\ Milewski},
     title = {Functions Equivalent to Borel Measurable Ones},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {58},
     year = {2010},
     pages = {55-64},
     zbl = {1207.54045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba58-1-7}
}
Andrzej Komisarski; Henryk Michalewski; Paweł Milewski. Functions Equivalent to Borel Measurable Ones. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 58 (2010) pp. 55-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba58-1-7/