An Isomorphic Classification of C(2×[0,α]) Spaces
Elói Medina Galego
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009), p. 279-287 / Harvested from The Polish Digital Mathematics Library

We present an extension of the classical isomorphic classification of the Banach spaces C([0,α]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,α]. As an application, we establish the isomorphic classification of the Banach spaces C(2×[0,α]) of all real continuous functions defined on the compact spaces 2×[0,α], the topological product of the Cantor cubes 2 with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. Consequently, it is relatively consistent with ZFC that this yields a complete isomorphic classification of C(2×[0,α]) spaces.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:281260
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-9,
     author = {El\'oi Medina Galego},
     title = {An Isomorphic Classification of $C(2^{} $\times$ [0,$\alpha$])$ Spaces},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {57},
     year = {2009},
     pages = {279-287},
     zbl = {1195.46009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-9}
}
Elói Medina Galego. An Isomorphic Classification of $C(2^{} × [0,α])$ Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) pp. 279-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-9/