We present an extension of the classical isomorphic classification of the Banach spaces C([0,α]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,α]. As an application, we establish the isomorphic classification of the Banach spaces of all real continuous functions defined on the compact spaces , the topological product of the Cantor cubes with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. Consequently, it is relatively consistent with ZFC that this yields a complete isomorphic classification of spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-9, author = {El\'oi Medina Galego}, title = {An Isomorphic Classification of $C(2^{} $\times$ [0,$\alpha$])$ Spaces}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {57}, year = {2009}, pages = {279-287}, zbl = {1195.46009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-9} }
Elói Medina Galego. An Isomorphic Classification of $C(2^{} × [0,α])$ Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) pp. 279-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-9/