We prove that if is harmonic and there exists a polynomial such that f + W is nonnegative, then f is a polynomial.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-5,
author = {Piotr Nayar},
title = {On Polynomially Bounded Harmonic Functions on the $Z^d$ Lattice},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
volume = {57},
year = {2009},
pages = {231-242},
zbl = {1191.31007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-5}
}
Piotr Nayar. On Polynomially Bounded Harmonic Functions on the $Z^d$ Lattice. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) pp. 231-242. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-3-5/