We give a shorter proof to a recent result by Neuberger [Rocky Mountain J. Math. 36 (2006)], in the real case. Our result is essentially an application of the global asymptotic stability Jacobian Conjecture. We also extend some of the results of Neuberger's paper.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-2-3,
author = {M. Sabatini},
title = {A Note on the Divergence-Free Jacobian Conjecture in $\mathbb{R}$$^2$},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
volume = {57},
year = {2009},
pages = {109-115},
zbl = {1173.14348},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-2-3}
}
M. Sabatini. A Note on the Divergence-Free Jacobian Conjecture in ℝ². Bulletin of the Polish Academy of Sciences. Mathematics, Tome 57 (2009) pp. 109-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba57-2-3/