Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms of a function f ∈ L²(E,μ) have the property , where ℰ is the Dirichlet form relative to the fractional diffusion.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-3-8, author = {Katarzyna Pietruska-Pa\l uba}, title = {Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {56}, year = {2008}, pages = {257-299}, zbl = {1165.60029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-3-8} }
Katarzyna Pietruska-Pałuba. Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) pp. 257-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-3-8/