Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces
Katarzyna Pietruska-Pałuba
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008), p. 257-299 / Harvested from The Polish Digital Mathematics Library

Supposing that the metric space in question supports a fractional diffusion, we prove that after introducing an appropriate multiplicative factor, the Gagliardo seminorms ||f||Wσ,2 of a function f ∈ L²(E,μ) have the property 1/C(f,f)liminfσ1(1σ)||f||Wσ,2limsupσ1(1σ)||f||Wσ,2C(f,f), where ℰ is the Dirichlet form relative to the fractional diffusion.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:281230
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-3-8,
     author = {Katarzyna Pietruska-Pa\l uba},
     title = {Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {56},
     year = {2008},
     pages = {257-299},
     zbl = {1165.60029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-3-8}
}
Katarzyna Pietruska-Pałuba. Limiting Behaviour of Dirichlet Forms for Stable Processes on Metric Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) pp. 257-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-3-8/