We characterize strong cohomological dimension of separable metric spaces in terms of extension of mappings. Using this characterization, we discuss the relation between strong cohomological dimension and (ordinal) cohomological dimension and give examples to clarify their gaps. We also show that if X is a separable metric ANR and G is a countable Abelian group. Hence for any separable metric ANR X.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-9, author = {Jerzy Dydak and Akira Koyama}, title = {Strong Cohomological Dimension}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {56}, year = {2008}, pages = {183-189}, zbl = {1156.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-9} }
Jerzy Dydak; Akira Koyama. Strong Cohomological Dimension. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) pp. 183-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-9/