Infinite-Dimensionality modulo Absolute Borel Classes
Vitalij Chatyrko ; Yasunao Hattori
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008), p. 163-176 / Harvested from The Polish Digital Mathematics Library

For each ordinal 1 ≤ α < ω₁ we present separable metrizable spaces Xα, Yα and Zα such that (i) fXα,fYα,fZα=ω, where f is either trdef or ₀-trsur, (ii) A(α)-trindXα= and M(α)-trindXα=-1, (iii) A(α)-trindYα=-1 and M(α)-trindYα=, and (iv) A(α)-trindZα=M(α)-trindZα= and A(α+1)M(α+1)-trindZα=-1. We also show that there exists no separable metrizable space Wα with A(α)-trindWα, M(α)-trindWα and A(α)M(α)-trindWα=, where A(α) (resp. M(α)) is the absolutely additive (resp. multiplicative) Borel class.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:281221
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-7,
     author = {Vitalij Chatyrko and Yasunao Hattori},
     title = {Infinite-Dimensionality modulo Absolute Borel Classes},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {56},
     year = {2008},
     pages = {163-176},
     zbl = {1153.54016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-7}
}
Vitalij Chatyrko; Yasunao Hattori. Infinite-Dimensionality modulo Absolute Borel Classes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) pp. 163-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-7/