For each ordinal 1 ≤ α < ω₁ we present separable metrizable spaces , and such that (i) , where f is either trdef or ₀-trsur, (ii) and , (iii) and , and (iv) and . We also show that there exists no separable metrizable space with , and , where A(α) (resp. M(α)) is the absolutely additive (resp. multiplicative) Borel class.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-7, author = {Vitalij Chatyrko and Yasunao Hattori}, title = {Infinite-Dimensionality modulo Absolute Borel Classes}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {56}, year = {2008}, pages = {163-176}, zbl = {1153.54016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-7} }
Vitalij Chatyrko; Yasunao Hattori. Infinite-Dimensionality modulo Absolute Borel Classes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) pp. 163-176. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-2-7/