For a prime p > 2, an integer a with gcd(a,p) = 1 and real 1 ≤ X,Y < p, we consider the set of points on the modular hyperbola . We give asymptotic formulas for the average values and with the Euler function φ(k) on the differences between the components of points of .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-1-1, author = {Igor E. Shparlinski}, title = {On the Euler Function on Differences Between the Coordinates of Points on Modular Hyperbolas}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {56}, year = {2008}, pages = {1-7}, zbl = {1144.11004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-1-1} }
Igor E. Shparlinski. On the Euler Function on Differences Between the Coordinates of Points on Modular Hyperbolas. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 56 (2008) pp. 1-7. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba56-1-1/