In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " is countably compact" and " is compact"
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba55-4-1, author = {Kyriakos Keremedis and Evangelos Felouzis and Eleftherios Tachtsis}, title = {On the Compactness and Countable Compactness of $2^{$\mathbb{R}$}$ in ZF}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {55}, year = {2007}, pages = {293-302}, zbl = {1134.03027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba55-4-1} }
Kyriakos Keremedis; Evangelos Felouzis; Eleftherios Tachtsis. On the Compactness and Countable Compactness of $2^{ℝ}$ in ZF. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) pp. 293-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba55-4-1/