Rational Points on Certain Hyperelliptic Curves over Finite Fields
Maciej Ulas
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007), p. 97-104 / Harvested from The Polish Digital Mathematics Library

Let K be a field, a,b ∈ K and ab ≠ 0. Consider the polynomials g₁(x) = xⁿ+ax+b, g₂(x) = xⁿ+ax²+bx, where n is a fixed positive integer. We show that for each k≥ 2 the hypersurface given by the equation Ski:u²=j=1kgi(xj), i=1,2, contains a rational curve. Using the above and van de Woestijne’s recent results we show how to construct a rational point different from the point at infinity on the curves Ci:y²=gi(x), (i=1,2) defined over a finite field, in polynomial time.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:280660
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba55-2-1,
     author = {Maciej Ulas},
     title = {Rational Points on Certain Hyperelliptic Curves over Finite Fields},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {55},
     year = {2007},
     pages = {97-104},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba55-2-1}
}
Maciej Ulas. Rational Points on Certain Hyperelliptic Curves over Finite Fields. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 55 (2007) pp. 97-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba55-2-1/