We study values of the Euler function φ(n) taken on binary palindromes of even length. In particular, if denotes the set of binary palindromes with precisely 2ℓ binary digits, we derive an asymptotic formula for the average value of the Euler function on .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba54-2-1, author = {William D. Banks and Igor E. Shparlinski}, title = {Average Value of the Euler Function on Binary Palindromes}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {54}, year = {2006}, pages = {95-101}, zbl = {1106.11004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba54-2-1} }
William D. Banks; Igor E. Shparlinski. Average Value of the Euler Function on Binary Palindromes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 54 (2006) pp. 95-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba54-2-1/