Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes
Kotaro Mine ; Katsuro Sakai ; Masato Yaguchi
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005), p. 409-419 / Harvested from The Polish Digital Mathematics Library

By Fin(X) (resp. Fink(X)), we denote the hyperspace of all non-empty finite subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let ℓ₂(τ) be the Hilbert space with weight τ and f(τ) the linear span of the canonical orthonormal basis of ℓ₂(τ). It is shown that if E=f(τ) or E is an absorbing set in ℓ₂(τ) for one of the absolute Borel classes α(τ) and α(τ) of weight ≤ τ (α > 0) then Fin(E) and each Fink(E) are homeomorphic to E. More generally, if X is a connected E-manifold then Fin(X) is homeomorphic to E and each Fink(X) is a connected E-manifold.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280236
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-4-6,
     author = {Kotaro Mine and Katsuro Sakai and Masato Yaguchi},
     title = {Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {53},
     year = {2005},
     pages = {409-419},
     zbl = {1117.54018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-4-6}
}
Kotaro Mine; Katsuro Sakai; Masato Yaguchi. Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) pp. 409-419. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-4-6/