Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and q-Gaussian Operators
Artur Buchholz
Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005), p. 315-321 / Harvested from The Polish Digital Mathematics Library

For (Pk) being Rademacher, Fermion or q-Gaussian (-1 ≤ q ≤ 0) operators, we find the optimal constants C2n, n∈ ℕ, in the inequality k=1NAkPk2n[C2n]1/2nmax(k=1NA*kAk1/2L2n,(k=1NAkA*k1/2∥L2n,valid for all finite sequences of operators (Ak) in the non-commutative L2n space related to a semifinite von Neumann algebra with trace. In particular, C2n=(2nr-1)!! for the Rademacher and Fermion sequences.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280682
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-3-9,
     author = {Artur Buchholz},
     title = {Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and q-Gaussian Operators},
     journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
     volume = {53},
     year = {2005},
     pages = {315-321},
     zbl = {1117.46043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-3-9}
}
Artur Buchholz. Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and q-Gaussian Operators. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) pp. 315-321. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-3-9/