It is proved that the Köthe-Bochner function space E(X) has property β if and only if X is uniformly convex and E has property β. In particular, property β does not lift from X to E(X) in contrast to the case of Köthe-Bochner sequence spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-1-7, author = {Pawe\l\ Kolwicz}, title = {On Property $\beta$ of Rolewicz in K\"othe-Bochner Function Spaces}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {53}, year = {2005}, pages = {75-85}, zbl = {1113.46031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-1-7} }
Paweł Kolwicz. On Property β of Rolewicz in Köthe-Bochner Function Spaces. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 53 (2005) pp. 75-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba53-1-7/