The paper presents a geometric method of finding periodic solutions of retarded functional differential equations (RFDE) , where f is T-periodic in t. We construct a pair of subsets of ℝ × ℝⁿ called a T-periodic block and compute its Lefschetz number. If it is nonzero, then there exists a T-periodic solution.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba52-4-2, author = {Marcin Paw\l owski}, title = {Periodic Solutions of Periodic Retarded Functional Differential Equations}, journal = {Bulletin of the Polish Academy of Sciences. Mathematics}, volume = {52}, year = {2004}, pages = {353-363}, zbl = {1117.34068}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba52-4-2} }
Marcin Pawłowski. Periodic Solutions of Periodic Retarded Functional Differential Equations. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) pp. 353-363. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba52-4-2/