Let H be a separable complex Hilbert space, 𝓐 a von Neumann algebra in 𝓛(H), ϕ a faithful, normal state on 𝓐, and 𝓑 a commutative von Neumann subalgebra of 𝓐. Given a sequence (Xₙ: n ≥ 1) of operators in 𝓑, we examine the relations between bundle convergence in 𝓑 and bundle convergence in 𝓐.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ba52-3-8,
author = {Barth\'elemy Le Gac and Ferenc M\'oricz},
title = {Bundle Convergence in a von Neumann Algebra and in a von Neumann Subalgebra},
journal = {Bulletin of the Polish Academy of Sciences. Mathematics},
volume = {52},
year = {2004},
pages = {283-295},
zbl = {1106.46049},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba52-3-8}
}
Barthélemy Le Gac; Ferenc Móricz. Bundle Convergence in a von Neumann Algebra and in a von Neumann Subalgebra. Bulletin of the Polish Academy of Sciences. Mathematics, Tome 52 (2004) pp. 283-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ba52-3-8/