We describe some one-dimensional moduli spaces of rank 2 Gieseker semistable sheaves on an Enriques surface improving earlier results of H. Kim. In the case of a nodal Enriques surface the moduli spaces obtained are reducible for general polarizations. For unnodal Enriques surfaces we show how to reduce the study of moduli spaces of high even rank Gieseker semistable sheaves to low ranks. To prove this we use the method of K. Yoshioka who showed that in the odd rank case, one can reduce to rank 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-7, author = {Marcin Hauzer}, title = {On moduli spaces of semistable sheaves on Enriques surfaces}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {305-321}, zbl = {1238.14008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-7} }
Marcin Hauzer. On moduli spaces of semistable sheaves on Enriques surfaces. Annales Polonici Mathematici, Tome 98 (2010) pp. 305-321. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-7/