Region of variability for functions with positive real part
Saminathan Ponnusamy ; Allu Vasudevarao
Annales Polonici Mathematici, Tome 98 (2010), p. 225-245 / Harvested from The Polish Digital Mathematics Library

For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let γ,β denote the class of all analytic functions P in the unit disk with P(0) = 1 and Re(eiγP(z))>βcosγ in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability V(z,λ) for 0zP(ζ)dζ when P ranges over the class (λ)=Pγ,β:P'(0)=2(1-β)λe-iγcosγ.As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:280770
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2,
     author = {Saminathan Ponnusamy and Allu Vasudevarao},
     title = {Region of variability for functions with positive real part},
     journal = {Annales Polonici Mathematici},
     volume = {98},
     year = {2010},
     pages = {225-245},
     zbl = {1209.30007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2}
}
Saminathan Ponnusamy; Allu Vasudevarao. Region of variability for functions with positive real part. Annales Polonici Mathematici, Tome 98 (2010) pp. 225-245. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2/