For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let denote the class of all analytic functions P in the unit disk with P(0) = 1 and in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability for when P ranges over the class As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2,
author = {Saminathan Ponnusamy and Allu Vasudevarao},
title = {Region of variability for functions with positive real part},
journal = {Annales Polonici Mathematici},
volume = {98},
year = {2010},
pages = {225-245},
zbl = {1209.30007},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2}
}
Saminathan Ponnusamy; Allu Vasudevarao. Region of variability for functions with positive real part. Annales Polonici Mathematici, Tome 98 (2010) pp. 225-245. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2/