For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let denote the class of all analytic functions P in the unit disk with P(0) = 1 and in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability for when P ranges over the class As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2, author = {Saminathan Ponnusamy and Allu Vasudevarao}, title = {Region of variability for functions with positive real part}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {225-245}, zbl = {1209.30007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2} }
Saminathan Ponnusamy; Allu Vasudevarao. Region of variability for functions with positive real part. Annales Polonici Mathematici, Tome 98 (2010) pp. 225-245. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-2/