Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be a mapping strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We discuss the problem of existence of probability distribution solutions of the general linear equation . We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009), 103-114.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-1, author = {Tomasz Kochanek and Janusz Morawiec}, title = {Probability distribution solutions of a general linear equation of infinite order, II}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {215-224}, zbl = {1207.60008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-1} }
Tomasz Kochanek; Janusz Morawiec. Probability distribution solutions of a general linear equation of infinite order, II. Annales Polonici Mathematici, Tome 98 (2010) pp. 215-224. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-3-1/